Search results for "Nodal solutions"
showing 10 items of 10 documents
Multiple Solutions with Sign Information for a Class of Coercive (p, 2)-Equations
2019
We consider a nonlinear Dirichlet equation driven by the sum of a p-Laplacian and of a Laplacian (a (p, 2)-equation). The hypotheses on the reaction f(z, x) are minimal and make the energy (Euler) functional of the problem coercive. We prove two multiplicity theorems producing three and four nontrivial smooth solutions, respectively, all with sign information. We apply our multiplicity results to the particular case of a class of parametric (p, 2)-equations.
Three solutions for parametric problems with nonhomogeneous (a,2)-type differential operators and reaction terms sublinear at zero
2019
Abstract We consider parametric Dirichlet problems driven by the sum of a Laplacian and a nonhomogeneous differential operator ( ( a , 2 ) -type equation) and with a reaction term which exhibits arbitrary polynomial growth and a nonlinear dependence on the parameter. We prove the existence of three distinct nontrivial smooth solutions for small values of the parameter, providing sign information for them: one is positive, one is negative and the third one is nodal.
Solutions with sign information for nonlinear Robin problems with no growth restriction on reaction
2019
We consider a parametric nonlinear Robin problem driven by a nonhomogeneous differential operator. The reaction is a Carathéodory function which is only locally defined (that is, the hypotheses concern only its behaviour near zero). The conditions on the reaction are minimal. Using variational tools together with truncation, perturbation and comparison techniques and critical groups, we show that for all small values of the parameter λ > 0, the problem has at least three nontrivial smooth solutions, two of constant sign and the third nodal.
Constant sign and nodal solutions for parametric anisotropic $(p, 2)$-equations
2021
We consider an anisotropic ▫$(p, 2)$▫-equation, with a parametric and superlinear reaction term.Weshow that for all small values of the parameter the problem has at least five nontrivial smooth solutions, four with constant sign and the fifth nodal (sign-changing). The proofs use tools from critical point theory, truncation and comparison techniques, and critical groups. Spletna objava: 9. 9. 2021. Abstract. Bibliografija: str. 1076.
The behavior of solutions of a parametric weighted (p, q)-laplacian equation
2021
<abstract><p>We study the behavior of solutions for the parametric equation</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ -\Delta_{p}^{a_1} u(z)-\Delta_{q}^{a_2} u(z) = \lambda |u(z)|^{q-2} u(z)+f(z,u(z)) \quad \mbox{in } \Omega,\, \lambda &gt;0, $\end{document} </tex-math></disp-formula></p> <p>under Dirichlet condition, where $ \Omega \subseteq \mathbb{R}^N $ is a bounded domain with a $ C^2 $-boundary $ \partial \Omega $, $ a_1, a_2 \in L^\infty(\Omega) $ with $ a_1(z), a_2(z) &gt; 0 $ for a.a. $ z \in \Omega $, $ p, q \in (1, \infty) $ and $ \Delta_{p}^{a_1}, \Delta_{q}^{a_2} $ are weighted …
Nonlinear Nonhomogeneous Elliptic Problems
2019
We consider nonlinear elliptic equations driven by a nonhomogeneous differential operator plus an indefinite potential. The boundary condition is either Dirichlet or Robin (including as a special case the Neumann problem). First we present the corresponding regularity theory (up to the boundary). Then we develop the nonlinear maximum principle and present some important nonlinear strong comparison principles. Subsequently we see how these results together with variational methods, truncation and perturbation techniques, and Morse theory (critical groups) can be used to analyze different classes of elliptic equations. Special attention is given to (p, 2)-equations (these are equations driven…
Multiplicity results for a class of asymmetric weakly coupled systems of second order ordinary differential equations
2005
We prove the existence and multiplicity of solutions to a two-point boundary value problem associated to a weakly coupled system of asymmetric second-order equations. Applying a classical change of variables, we transform the initial problem into an equivalent problem whose solutions can be characterized by their nodal properties. The proof is developed in the framework of the shooting methods and it is based on some estimates on the rotation numbers associated to each component of the solutions to the equivalent system.
A multiplicity theorem for parametric superlinear (p,q)-equations
2020
We consider a parametric nonlinear Robin problem driven by the sum of a \(p\)-Laplacian and of a \(q\)-Laplacian (\((p,q)\)-equation). The reaction term is \((p-1)\)-superlinear but need not satisfy the Ambrosetti-Rabinowitz condition. Using variational tools, together with truncation and comparison techniques and critical groups, we show that for all small values of the parameter, the problem has at least five nontrivial smooth solutions, all with sign information.
Constant sign and nodal solutions for nonlinear robin equations with locally defined source term
2020
We consider a parametric Robin problem driven by a nonlinear, nonhomogeneous differential operator which includes as special cases the p-Laplacian and the (p,q)-Laplacian. The source term is parametric and only locally defined (that is, in a neighborhood of zero). Using suitable cut-off techniques together with variational tools and comparison principles, we show that for all big values of the parameter, the problem has at least three nontrivial smooth solutions, all with sign information (positive, negative and nodal).
On Noncoercive (p, q)-Equations
2021
We consider a nonlinear Dirichlet problem driven by a (p, q)-Laplace differential operator (1 < q < p). The reaction is (p - 1)-linear near +/-infinity and the problem is noncoercive. Using variational tools and truncation and comparison techniques together with critical groups, we produce five nontrivial smooth solutions all with sign information and ordered. In the particular case when q = 2, we produce a second nodal solution for a total of six nontrivial smooth solutions all with sign information.